Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.140
Filtrar
1.
Curr Opin Oncol ; 36(3): 195-201, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573209

RESUMO

PURPOSE OF REVIEW: Targeting specific steroidogenic enzymes is effective in decreasing testosterone synthesis, resulting in significant antitumor effects in prostate cancer. Such treatments result in disruptions of complicated and intertwining pathways with systemic physiologic consequences via effects on the adrenal gland and renin-angiotensin-aldosterone axis. This review highlights some of these aspects that need to be taken into consideration when treating patients with androgen biosynthesis inhibitors. RECENT FINDINGS: Targeting CYP17A1, a key enzyme involved in androgen biosynthesis, is a well established treatment in prostate cancer. More recently, efforts are underway to target a gatekeeper enzyme of steroidogenesis, CYP11A1. This enzyme mediates conversion of cholesterol to pregnenolone, the first step in steroid hormone biogenesis. Studies are beginning to demonstrate antitumor effects of ODM-208, a CYP11A1 inhibitor in prostate cancer. Although anticipated to have a therapeutic role in prostate cancer, there are potential downstream effects of CYP11A1 targeting arising from suppression of the entire adrenal cortex, including long-term adrenal insufficiency and possibly cardiovascular dysregulation. SUMMARY: Agents targeting androgen biosynthesis can have systemic implications. Balancing management of prostate cancer with better understanding of the mechanisms associated with potential side effects will allow for patients to obtain improved antitumor benefit while mitigating against treatment-associated adverse effects.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Neoplasias da Próstata/tratamento farmacológico
2.
Microb Cell Fact ; 23(1): 105, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594656

RESUMO

BACKGROUND: Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS: Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION: The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.


Assuntos
Fitosteróis , Progesterona , Bovinos , Animais , Pregnenolona/metabolismo , Esteróis , Esteroides , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Mamíferos/metabolismo , Éteres
3.
Cell Rep ; 43(3): 113936, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489269

RESUMO

Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Humanos , Feminino , Osteogênese , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Osteoclastos/metabolismo , Pregnenolona/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular
4.
Theriogenology ; 220: 108-115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507824

RESUMO

The presence of Kisspeptin (Kp) and its receptors in the corpus luteum (CL) of buffalo has recently been demonstrated. In this study, we investigated the role of Kp in the modulation of progesterone (P4) synthesis in vitro. The primary culture of bubaline luteal cells (LCs) was treated with 10, 50, and 100 nM of Kp and Kp antagonist (KpA) alongside a vehicle control. The combined effect of Kp and KpA was assessed at 100 nM concentration. Intracellular response to Kp treatment in the LCs was assessed by examining transcript profiles (LHR, STAR, CYP11A1, HSD3B1, and ERK1/2) using quantitative polymerase chain reaction (qPCR). In addition, the immunolocalization of ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in the LCs was studied using immunocytochemistry. Accumulation of P4 from the culture supernatant was determined using enzyme-linked immunosorbent assay (ELISA). The results indicated that LCs had a greater p-ERK1/2 expression in the Kp treatment groups. A significant increase in the P4 concentration was recorded at 50 nM and 100 nM Kp, while KpA did not affect the basal concentration of P4. However, the addition of KpA to the Kp-treated group at 100 nM concentration suppressed the Kp-induced P4 accumulation into a concentration similar to the control. There was significant upregulation of ERK1/2 and CYP11A1 expressions in the Kp-treated LCs at 100 nM (18.1 and 37fold, respectively, p < 0.01). However, the addition of KpA to Kp-treated LCs modulated ERK1/2, LHR, STAR, CYP11A1, and HSD3B1 at 100 nM concentration. It can be concluded that Kp at 100 nM stimulated P4 production, while the addition of KpA suppressed Kp-induced P4 production in the buffalo LCs culture. Furthermore, an increment in p-ERK1/2 expression in the LCs indicated activation of the Kp signaling pathway was associated with luteal steroidogenesis.


Assuntos
Células Lúteas , Feminino , Animais , Progesterona/metabolismo , Kisspeptinas/genética , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Regulação para Cima , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Sistema de Sinalização das MAP Quinases , Corpo Lúteo/fisiologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo
5.
Front Immunol ; 15: 1330094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361932

RESUMO

Microbiota plays a role in shaping the HPA-axis response to psychological stressors. To examine the role of microbiota in response to acute immune stressor, we stimulated the adaptive immune system by anti-CD3 antibody injection and investigated the expression of adrenal steroidogenic enzymes and profiling of plasma corticosteroids and their metabolites in specific pathogen-free (SPF) and germ-free (GF) mice. Using UHPLC-MS/MS, we showed that 4 hours after immune challenge the plasma levels of pregnenolone, progesterone, 11-deoxycorticosterone, corticosterone (CORT), 11-dehydroCORT and their 3α/ß-, 5α-, and 20α-reduced metabolites were increased in SPF mice, but in their GF counterparts, only CORT was increased. Neither immune stress nor microbiota changed the mRNA and protein levels of enzymes of adrenal steroidogenesis. In contrast, immune stress resulted in downregulated expression of steroidogenic genes (Star, Cyp11a1, Hsd3b1, Hsd3b6) and upregulated expression of genes of the 3α-hydroxysteroid oxidoreductase pathway (Akr1c21, Dhrs9) in the testes of SPF mice. In the liver, immune stress downregulated the expression of genes encoding enzymes with 3ß-hydroxysteroid dehydrogenase (HSD) (Hsd3b2, Hsd3b3, Hsd3b4, Hsd3b5), 3α-HSD (Akr1c14), 20α-HSD (Akr1c6, Hsd17b1, Hsd17b2) and 5α-reductase (Srd5a1) activities, except for Dhrs9, which was upregulated. In the colon, microbiota downregulated Cyp11a1 and modulated the response of Hsd11b1 and Hsd11b2 expression to immune stress. These data underline the role of microbiota in shaping the response to immune stressor. Microbiota modulates the stress-induced increase in C21 steroids, including those that are neuroactive that could play a role in alteration of HPA axis response to stress in GF animals.


Assuntos
Sistema Hipotálamo-Hipofisário , Microbiota , Masculino , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Espectrometria de Massas em Tandem , Sistema Hipófise-Suprarrenal/metabolismo , Esteroides/metabolismo , Corticosterona/metabolismo
6.
NEJM Evid ; 3(1): EVIDoa2300171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38320513

RESUMO

Targeted Inhibition of CYP11A1 in Prostate CancerIn this single-arm, multicenter, combined phase 1 and phase 2 study, patients with metastatic prostate adenocarcinoma with progression on prior androgen receptor pathway inhibitors and taxane-based chemotherapy were treated with ODM-208. A decrease in prostate-specific antigen levels of 50% or more occurred in 16/42 (38.1%) and 24/45 (53.3%) in phase 1 and 2 respectively. Responses mainly occurred in patients with androgen receptor mutations. Adrenal insufficiency was the dose-limiting toxicity.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Enzima de Clivagem da Cadeia Lateral do Colesterol , Antígeno Prostático Específico/uso terapêutico , Resultado do Tratamento , Antagonistas de Receptores de Andrógenos/farmacologia
7.
Reprod Biol Endocrinol ; 22(1): 17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297261

RESUMO

BACKGROUND: In our previous investigation, we revealed a significant increase in the expression of microRNA-6881-3p (miR-6881-3p) in follicular fluid granulosa cells (GCs) from women with diminished ovarian reserve (DOR) compared to those with normal ovarian reserve (NOR). However, the role of miR-6881-3p in the development of DOR remains poorly understood. OBJECTIVE: This study aimed to elucidate the involvement of miR-6881-3p in the regulation of granulosa cells (GCs) function and the pathogenesis of DOR. MATERIALS AND METHODS: Initially, we assessed the expression levels of miR-6881-3p in GCs obtained from human follicular fluid in both NOR and DOR cases and explored the correlation between miR-6881-3p expression and clinical outcomes in assisted reproduction technology (ART). Bioinformatic predictions and dual-luciferase reporter assays were employed to identify the target gene of miR-6881-3p. Manipulation of miR-6881-3p expression was achieved through the transfection of KGN cells with miR-6881-3p mimics, inhibitor, and miRNA negative control (NC). Following transfection, we assessed granulosa cell apoptosis and cell cycle progression via flow cytometry and quantified target gene expression through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Finally, we examined the correlation between target gene expression levels in GCs from NOR and DOR patients and their association with ART outcomes. RESULTS: Our findings revealed elevated miR-6881-3p levels in GCs from DOR patients, which negatively correlated with ovarian reserve function and ART outcomes. We identified a direct binding interaction between miR-6881-3p and the 3'-untranslated region of the SMAD4. Transfection with miR-6881-3p mimics induced apoptosis in KGN cell. Furthermore, miR-6881-3p expression negatively correlated with both mRNA and protein levels of the SMAD4. The mRNA and protein levels of SMAD4 were notably reduced in GCs from DOR patients, and SMAD4 mRNA expression positively correlated with ART outcomes. In addition, the mRNA levels of FSHR, CYP11A1 were notably reduced after transfection with miR-6881-3p mimics in KGN cell, while LHCGR notably increased. The mRNA and protein levels of FSHR, CYP11A1 were notably reduced in GCs from DOR patients, while LHCGR notably increased. CONCLUSION: This study underscores the role of miR-6881-3p in directly targeting SMAD4 mRNA, subsequently diminishing granulosa cell viability and promoting apoptosis, and may affect steroid hormone regulation and gonadotropin signal reception in GCs. These findings contribute to our understanding of the pathogenesis of DOR.


Assuntos
MicroRNAs , Doenças Ovarianas , Reserva Ovariana , Humanos , Feminino , Reserva Ovariana/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , MicroRNAs/metabolismo , Doenças Ovarianas/metabolismo , Células da Granulosa/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo , Proliferação de Células/genética , Proteína Smad4/metabolismo
8.
Reproduction ; 167(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271820

RESUMO

In brief: In this study, we examined the relationship between BMAL1 expression and the genes regulating steroid biosynthesis in human luteinized granulosa cells. BMAL1 function is crucial for steroid production and proper ovarian function, highlighting the importance of circadian clock regulation in female reproductive health. Abstract: Human luteinized granulosa cells were collected to analyze circadian clock gene expression and its effect on the genes regulating steroid biosynthesis. We used siRNA to knock down the expression of BMAL1 in KGN cells. We measured the expression levels of genes regulating steroid biosynthesis and circadian clock RT-qPCR. We demonstrated that BMAL1 expression positively correlates with genes regulating steroid biosynthesis (CYP11A1, CYP19A1, STAR, and ESR2). The knockdown of BMAL1 in KGN cells revealed a significant decrease in steroid synthase expression. In contrast, when BMAL1 was overexpressed in KGN and HGL5 cells, we observed a significant increase in the expression of steroid synthases, such as CYP11A1 and CYP19A1. These results indicated that BMAL1 positively controls 17ß-estradiol (E2) secretion in granulosa cells. We also demonstrated that dexamethasone synchronization in KGN cells enhanced the rhythmic alterations in circadian clock genes. Our study suggests that BMAL1 plays a critical role in steroid biosynthesis in human luteinized granulosa cells, thereby emphasizing the importance of BMAL1 in the regulation of reproductive physiology.


Assuntos
Fatores de Transcrição ARNTL , Enzima de Clivagem da Cadeia Lateral do Colesterol , Feminino , Humanos , Fatores de Transcrição ARNTL/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Estradiol/metabolismo , Células da Granulosa/metabolismo , Progesterona/metabolismo
9.
Zool Res ; 45(1): 176-188, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199972

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), play crucial roles in the reproductive health of vertebrates, including humans. Nevertheless, the underlying mechanism related to this phenomenon remains largely unknown. In this study, we employed two zebrafish genetic models, i.e., elovl2 -/- mutant as an endogenous DHA-deficient model and fat1 (omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and quality. Results show that the elovl2 -/- mutants had much lower fecundity and poorer oocyte quality than the wild-type controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wild-type controls. DHA deficiency in elovl2 -/- embryos led to defects in egg activation, poor microtubule stability, and reduced pregnenolone levels. Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic-pituitary-gonadal axis was enhanced by DHA. In conclusion, using two unique genetic models, our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.


Assuntos
Ácidos Docosa-Hexaenoicos , Peixe-Zebra , Animais , Humanos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Oogênese/genética , Oócitos
10.
Environ Toxicol ; 39(3): 1700-1714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050817

RESUMO

Perfluorooctanoic acid (PFOA) is a commonly used short-chain synthetic perfluoroalkyl agent. Immature Leydig cells (ILCs) are localized in the testis and responsible for androgen biosynthesis and metabolism. Although PFOA shows toxicity in the reproductive system, it is not clear if it disrupts the function of ILCs. In the present study, primary ILCs were isolated from 35-day-old rats and exposed to a range of PFOA concentrations (0, 0.01, 0.1, or 1 µM). It was determined that 0.1 or 1 µM PFOA reduced total androgen biosynthesis in ILCs. Specifically, 22R-hydroxycholesterol (22R), and pregnenolone (P5) mediated androgen biosynthesis were reduced by 0.1 µM PFOA. PFOA also selectively downregulated mRNA and protein expressions of steroidogenic enzymes including LHCGR, CYP11A1, 3ß-HSD1, and NR5A1 at 0.01, 0.1, or 1 µM. Further analysis revealed that 0.1 µM PFOA inhibited CYP11A1 and 3ß-HSD1 enzyme activities. However, PFOA did not significantly affect androgen metabolism and turnover under any of the conditions tested. And PFOA gavaging to 35-day-old rats at 5 or 10 mg/kg for 7 or 14 days also reduced serum androgen levels secreted by ILCs. Moreover, PFOA gavaging also downregulated the mRNA and protein expression levels of LHCGR, CYP11A1, 3ß-HSD1, and NR5A1 in vivo. Taken together, these findings suggest that PFOA inhibits androgen biosynthesis in ILCs by selectively targeting key enzymes in the synthesis pathway.


Assuntos
Caprilatos , Fluorocarbonos , Células Intersticiais do Testículo , Masculino , Ratos , Animais , Células Intersticiais do Testículo/metabolismo , Androgênios/metabolismo , Ratos Sprague-Dawley , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Fluorocarbonos/metabolismo , RNA Mensageiro/metabolismo , Testosterona
11.
J Biol Chem ; 300(1): 105495, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006947

RESUMO

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Colesterol , Pregnenolona , Humanos , Adrenodoxina/metabolismo , Colesterol/química , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/química , Enzima de Clivagem da Cadeia Lateral do Colesterol/isolamento & purificação , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Cinética , Pregnenolona/química , Pregnenolona/metabolismo , Ligação Proteica , Oxirredução , Estrutura Molecular
12.
Br Poult Sci ; 65(1): 44-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37772759

RESUMO

1. The bioflavonoid quercetin is a biologically active component, but its functional regulation of granulosa cells (GCs) during chicken follicular development is little studied. To investigate the effect of quercetin on follicular development in laying hens, an in vitro study was conducted on granulosa cells from hierarchical follicles treated with quercetin.2. The effect of quercetin on cell activity, proliferation and apoptosis of granulosa cells was detected by CCK-8, EdU and apoptosis assays. The effect on progesterone secretion from granulosa cells was investigated by enzyme-linked immunosorbent assay (ELISA). Expression of proliferating cell nuclear antigen (PCNA) mRNA and oestrogen receptors (ERs), as well as the expression of steroid acute regulatory protein (StAR), cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA during progesterone synthesis, were measured by real-time quantitative polymerase chain reaction (RT-qPCR). PCNA, StAR and CYP11A1 protein expression levels were detected using Western blotting (WB).3. The results showed that treatment with quercetin in granulosa cells significantly enhanced cell vitality and proliferation, reduced apoptosis and promoted the expression of gene and protein levels of PCNA. The levels of progesterone secretion increased significantly following quercetin treatment, as did the expression levels of StAR and CYP11A1 using the Western Blot (WB) method.4. The mRNA expression levels of ERα were significantly upregulated in the 100 ng/ml and 1000 ng/ml quercetin-treated groups, while there was no significant difference in expression levels of ERß mRNA.


Assuntos
Galinhas , Progesterona , Feminino , Animais , Progesterona/metabolismo , Progesterona/farmacologia , Galinhas/genética , Quercetina/farmacologia , Quercetina/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células da Granulosa/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
J Exp Zool A Ecol Integr Physiol ; 341(1): 31-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861072

RESUMO

Cadmium is a male reproductive toxicant that interacts with a variety of pathogenetic mechanisms. However, the effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis is still ambiguous. Light microscopy, Western blot, immunohistochemistry, immunofluorescence, and quantitative polymerase chain reaction were performed to study the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis. The results indicated that in the control group, Leydig cells showed dynamic immunoreactivity and immunosignaling action with a strong positive significant secretion of 3ß-hydroxysteroid hydrogenase (3ß-HSD) in the interstitial compartment of the testis. Leydig cells showed a high active regulator mechanism of the steroidogenic pathway with increased the proteins and genes expression level of steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol (CYP11A1), cytochrome P450 cholesterol (CYP17A1), 3ß-hydroxysteroid hydrogenase (3ß-HSD) 17ß-hydroxysteroid hydrogenase (17ß-HSD), and androgen receptor (AR) that maintained the healthy and vigorous progressive motile spermatozoa. However, on treatment with cadmium, Leydig cells were irregularly dispersed in the interstitial compartment of the testis. Leydig cells showed reduced immunoreactivity and immunosignaling of 3ß-HSD protein. Meanwhile, cadmium impaired the regulatory mechanism of the steroidogenic process of the Leydig cells with reduced protein and gene expression levels of STAR, CYP11A1, CYP17A1, 3ß-HSD, 17ß-HSD, and AR in the testis. Additionally, treatment with cadmium impaired the serum LH, FSH, and testosterone levels in blood as compared to control. This study explores the hazardous effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis.


Assuntos
Hidrogenase , Células Intersticiais do Testículo , Masculino , Animais , Células Intersticiais do Testículo/química , Células Intersticiais do Testículo/metabolismo , Cádmio/metabolismo , Testosterona , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Hidroxiesteroides/metabolismo , Hidroxiesteroides/farmacologia , Hidrogenase/metabolismo , Hidrogenase/farmacologia , Espermatogênese , Colesterol/metabolismo , Colesterol/farmacologia
14.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 218-222, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063092

RESUMO

Resveratrol (Res) is a polyphenolic compound that exhibits a diverse array of biological effects. Herein, we detected the ability of Res on murine granulosa cells (GCs) against impaired steroidogenesis and apoptotic death in response to high glucose levels. Ovarian GCs were harvested from C57BL/6 mice and cultured in steroidogenic media supplemented with follicle-stimulating hormone (FSH, 30 ng/mL), Res (50 µmol/L), and low or high glucose concentrations (5 mM or 30 mM). After culture for 24 h, cell supernatants were harvested and the levels of progesterone and estradiol therein were measured. Also, caspase-3 activity and the expression of genes associated with apoptosis and steroidogenesis were assessed. High-glucose treatment suppressed steroidogenesis in this assay system, resulting in the impaired expression of steroidogenesis-related genes including Cyp11a1, Cyp19a1, 3ßHSD, and StAR and a concomitant decrease in progesterone and estradiol production. Cells exposed to high glucose also exhibited apoptotic phenotypes characterized by Bax upregulation, Bcl-2 downregulation, and increased caspase-3 activity levels. However, Res treatment was sufficient to reverse this high glucose level-induced apoptotic and steroidogenic phenotypes with improving progesterone and estradiol production, and these maybe related the effects of Res on Cyp11a1, Cyp19a1, 3ßHSD, and StAR expressions. These data suggested that Res is well suited to overcoming the negative effects of hyperglycemia of GC functionality.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Progesterona , Feminino , Camundongos , Animais , Progesterona/farmacologia , Resveratrol/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Caspase 3/metabolismo , Camundongos Endogâmicos C57BL , Estradiol/farmacologia , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Apoptose , Glucose/metabolismo , Células Cultivadas
15.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068875

RESUMO

Melatonin has been proved to be involved in testosterone synthesis, but whether melatonin participates in testosterone synthesis by regulating miRNA in Leydig cells is still unclear. The purpose of this study is to clarify the mechanism of melatonin on Leydig cells testosterone synthesis from the perspective of miRNA. Our results showed that melatonin could significantly inhibit testosterone synthesis in rooster Leydig cells. miR-7481-3p and CXCL14 were selected as the target of melatonin based on RNA-seq and miRNA sequencing. The results of dual-luciferase reporter assays showed that miR-7481-3p targeted the 3'-UTR of CXCL14. The overexpression of miR-7481-3p significantly inhibited the expression of CXCL14 and restored the inhibitory role of melatonin testosterone synthesis and the expression of StAR, CYP11A1, and 3ß-HSD in rooster Leydig cells. Similarly, interference with CXCL14 could reverse the inhibitory effect of melatonin on the level of testosterone synthesis and the expression of StAR, CYP11A1, and 3ß-HSD in rooster Leydig cells. The RNA-seq results showed that melatonin could activate the PI3K/AKT signal pathway. Interference with CXCL14 significantly inhibited the phosphorylation level of PI3K and AKT, and the inhibited PI3K/AKT signal pathway could reverse the inhibitory effect of CXCL14 on testosterone synthesis and the expression of StAR, CYP11A1 and 3ß-HSD in rooster Leydig cells. Our results indicated that melatonin inhibits testosterone synthesis by targeting miR-7481-3p/CXCL14 and inhibiting the PI3K/AKT pathway.


Assuntos
Células Intersticiais do Testículo , Melatonina , MicroRNAs , Testosterona , Animais , Masculino , Galinhas/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células Intersticiais do Testículo/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testosterona/metabolismo
16.
Endocrinology ; 165(2)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38146648

RESUMO

Progesterone synthesized in the placenta is essential for pregnancy maintenance. CYP11A1 is a key enzyme in progesterone synthesis, and its expression increases greatly during trophoblast syncytialization. However, the underlying mechanism remains elusive. Here, we demonstrated that passive demethylation of CYP11A1 promoter accounted for the upregulation of CYP11A1 expression during syncytialization with the participation of the transcription factor C/EBPα. We found that the methylation rate of a CpG locus in the CYP11A1 promoter was significantly reduced along with decreased DNA methyltransferase 1 (DNMT1) expression and its enrichment at the CYP11A1 promoter during syncytialization. DNMT1 overexpression not only increased the methylation of this CpG locus in the CYP11A1 promoter, but also decreased CYP11A1 expression and progesterone production. In silico analysis disclosed multiple C/EBPα binding sites in both CYP11A1 and DNMT1 promoters. C/EBPα expression and its enrichments at both the DNMT1 and CYP11A1 promoters were significantly increased during syncytialization. Knocking-down C/EBPα expression increased DNMT1 while it decreased CYP11A1 expression during syncytialization. Conclusively, C/EBPα plays a dual role in the regulation of CYP11A1 during syncytialization. C/EBPα not only drives CYP11A1 expression directly, but also indirectly through downregulation of DNMT1, which leads to decreased methylation in the CpG locus of the CYP11A1 promoter, resulting in increased progesterone production during syncytialization.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Enzima de Clivagem da Cadeia Lateral do Colesterol , DNA (Citosina-5-)-Metiltransferase 1 , Placenta , Feminino , Humanos , Gravidez , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Metilação de DNA , Placenta/metabolismo , Progesterona/metabolismo , Trofoblastos/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
17.
J Reprod Dev ; 69(6): 337-346, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940556

RESUMO

Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17ß (E2) assumes a central role in follicular development and selection by activating estrogen receptors ß (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (< 6 mm) exhibited the highest levels of ESR2 mRNA expression, whereas medium-sized follicles (7-8 mm) displayed higher levels than large-sized follicles (≥ 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small- and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small- and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection.


Assuntos
Hormônios Esteroides Gonadais , Fator de Crescimento Insulin-Like I , Folículo Ovariano , Animais , Bovinos , Feminino , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Estradiol/metabolismo , Células da Granulosa/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Folículo Ovariano/metabolismo , Progesterona/farmacologia , Receptores de Estradiol/metabolismo , RNA Mensageiro/metabolismo , Hormônios Esteroides Gonadais/metabolismo
18.
Zhonghua Nan Ke Xue ; 29(1): 76-82, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-37846837

RESUMO

OBJECTIVE: To investigate the effect of Xiongcan Yishen Formula (XYF) on the expressions of the clock genes in the testis tissue of the rats with late-onset hypogonadism (LOH). METHODS: Forty-eight 8-week-old male SD rats were randomly divided into 6 groups, normal control, model control, testosterone propionate (TP), and low-, medium- and high-dose XYF. The LOH model was made in the later 5 groups of rats by intraperitoneal injection of D-galactose at 480 mg/kg/d for 56 successive days, while the normal controls were injected with the same volume of normal saline. After modeling, the rats in the low-, medium- and high-dose XYF groups were treated intragastrically with XYF at 10.4, 20.8 and 41.6 g/kg/d, bid, respectively, those in the normal and model control groups with the same volume of distilled water, and those in the TP group intramuscularly with TP at 5.21 mg/kg/d, qd alt, all for 28 days. After treatment, the supernatant was obtained for measurement of the serum T level by ELISA, and the testis tissue collected for determination of the mRNA and protein expressions of BMAL1, NR1D1, PER2, CRY1, StAR and CYP11A1 by RT-qPCR and Western blot. RESULTS: Compared with the normal controls, the rats in the LOH model control group showed significantly decreased serum T and mRNA and protein expressions of BMAL1, NR1D1, PER2, CRY1, StAR and CYP11A1 (P < 0.05). In comparison with the findings in the model controls, the T level was remarkably increased in the TP and XYF groups (P < 0.05), the expressions of StAR mRNA and CYP11A1 mRNA and protein markedly up-regulated in the high-dose XYF group (P < 0.05), and so was the expression of the StAR protein in the XYF and TP groups (P < 0.05), those of BMAL1 and NR1D1 proteins and PER2 mRNA and protein in the high-dose XYF group (P < 0.05), those of BMAL1 mRNA and CRY1 protein in the medium- and high-dose XYF groups (P < 0.05), that of NR1D1 mRNA in the XYF and TP groups (P < 0.05), and that of CRY1 mRNA in the medium- and high-dose XYF and TP groups (P < 0.05). CONCLUSION: Xiongcan Yishen Formula could up-regulate the expressions of the clock genes in the testis tissue of the LOH rats and increase the serum T level as well, which may underlie the mechanisms of Xiongcan Yishen Formula acting on LOH.


Assuntos
Hipogonadismo , Propionato de Testosterona , Ratos , Masculino , Animais , Testículo , Testosterona , Fatores de Transcrição ARNTL/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol , Ratos Sprague-Dawley , Hipogonadismo/genética , RNA Mensageiro , Expressão Gênica
19.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R750-R758, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37867473

RESUMO

The oviduct of the Chinese brown frog (Rana dybowskii) expands in prehibernation rather than in prespawning, which is one of the physiological phenomena that occur in the preparation for hibernation. Steroid hormones are known to regulate oviductal development. Cholesterol synthesis and steroidogenesis may play an important role in the expansion of the oviduct before hibernation. In this study, we investigated the expression patterns of the markers that are involved in the de novo steroid synthesis pathway in the oviduct of R. dybowskii during prespawning and prehibernation. According to histological analysis, the oviduct of R. dybowskii contains epithelial cells, glandular cells, and tubule lumens. During prehibernation, oviductal pipe diameter and weight were significantly larger than during prespawning. 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR), low-density lipoprotein receptor (LDLR), steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) were detected in epithelial cells in prehibernation and glandular cells during prespawning. HMGCR, LDLR, StAR, and P450scc protein expression levels were higher in prehibernation than during prespawning, but the SF-1 protein expression level did not significantly differ. HMGCR, LDLR, StAR, P450scc (CYP11A1), and SF-1 (NR5A1) mRNA expression levels were significantly higher in prehibernation compared with prespawning. The transcriptome results showed that the steroid synthesis pathway was highly expressed during prehibernation. Existing results indicate that the oviduct is able to synthesize steroid hormones using cholesterol, and that steroid hormones may affect the oviductal functions of R. dybowskii.


Assuntos
Oviductos , Ranidae , Humanos , Animais , Feminino , Ranidae/genética , Ranidae/metabolismo , Oviductos/metabolismo , Células Epiteliais/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Colesterol/metabolismo , Hormônios/metabolismo
20.
Environ Pollut ; 338: 122698, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832777

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Due to the ubiquitous presence of PFOA in the environment, the impacts of PFOA exposure not only affect human reproductive health but may also affect livestock reproductive health. The focus of this study was to determine the effects of PFOA on the physiological functions of bovine granulosa cells in vitro. Primary bovine granulosa cells were exposed to 0, 4, and 40 µM PFOA for 48 and 96 h followed by analysis of granulosa cell function including cell viability, steroidogenesis, and mitochondrial activity. Results revealed that PFOA inhibited steroid hormone secretion and altered the expression of key enzymes required for steroidogenesis. Gene expression analysis revealed decreases in mRNA transcripts for CYP11A1, HSD3B, and CYP19A1 and an increase in STAR expression after PFOA exposure. Similarly, PFOA decreased levels of CYP11A1 and CYP19A1 protein. PFOA did not impact live cell number, alter the cell cycle, or induce apoptosis, although it reduced metabolic activity, indicative of mitochondrial dysfunction. We observed that PFOA treatment caused a loss of mitochondrial membrane potential and increases in PINK protein expression, suggestive of mitophagy and mitochondrial damage. Further analysis revealed that these changes were associated with increased levels of reactive oxygen species. Expression of autophagy related proteins phosphoULK1 and LAMP2 were increased after PFOA exposure, in addition to an increased abundance of lysosomes, characteristic of increased autophagy. Taken together, these findings suggest that PFOA can negatively impact granulosa cell steroidogenesis via mitochondrial dysfunction.


Assuntos
Caprilatos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Feminino , Humanos , Animais , Bovinos , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Caprilatos/toxicidade , Caprilatos/metabolismo , Células da Granulosa , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...